
Get values, rows and columns in pandas
dataframe
AUGUST 18, 2020 JAY

This article is part of the Transition from Excel to Python series. We have walked through the data i/o
(reading and saving files) part. Let’s move on to something more interesting. In Excel, we can see the
rows, columns, and cells. We can reference the values by using a “=” sign or within a formula. In
Python, the data is stored in computer memory (i.e., not directly visible to the users), luckily the
pandas library provides easy ways to get values, rows, and columns.

Let’s first prepare a dataframe, so we have something to work with. We’ll use this example file from before, and we can open the Excel file on the side for reference.

import pandas as pd

df = pd.read_excel('users.xlsx')

>>> df

 User Name Country City Gender Age

0 Forrest Gump USA New York M 50

1 Mary Jane CANADA Tornoto F 30

2 Harry Porter UK London M 20

3 Jean Grey CHINA Shanghai F 30

excel_sheet_example

Some observations about this small table/dataframe:

• There are five columns with names: “User Name”, “Country”, “City”, “Gender”, “Age”
• There are 4 rows (excluding the header row)

https://pythoninoffice.com/get-values-rows-and-columns-in-pandas-dataframe/
https://pythoninoffice.com/author/taoofinvestment/
https://pythoninoffice.com/use-excel-python-together/
https://pythoninoffice.com/wp-content/uploads/2020/08/users.xlsx

df.index returns the list of the index, in our case, it’s just integers 0, 1, 2, 3.

df.columns gives the list of the column (header) names.

df.shape shows the dimension of the dataframe, in this case it’s 4 rows by 5 columns.

>>> df.index

RangeIndex(start=0, stop=4, step=1)

>>> df.columns

Index(['User Name', 'Country', 'City', 'Gender', 'Age'], dtype='object')

>>> df.shape

(4, 5)

pandas get columns

There are several ways to get columns in pandas. Each method has its pros and cons, so I would use
them differently based on the situation.

The dot notation

We can type df.Country to get the “Country” column. This is a quick and easy way to get columns.
However, if the column name contains space, such as “User Name”. This method will not work.

>>> df.Country

0 USA

1 CANADA

2 UK

3 CHINA

Name: Country, dtype: object

>>> df.Age

0 50

1 30

2 20

3 30

Name: Age, dtype: int64

>>> df.User Name

SyntaxError: invalid syntax

Square brackets notation

This is my personal favorite. It requires a dataframe name and a column name, which goes like this: dataframe[column name]. The column name inside the square brackets is a string, so we have to use quotation around it. Although it requires more typing than the dot notation, this method will always work in any cases. Because we wrap around the string (column name) with a quote, names with spaces are also allowed here.

>>> df['User Name']

0 Forrest Gump

1 Mary Jane

2 Harry Porter

3 Jean Grey

Name: User Name, dtype: object

>>> df['City']

0 New York

1 Tornoto

2 London

3 Shanghai

Name: City, dtype: object

Get multiple columns

The square bracket notation makes getting multiple columns easy. The syntax is similar, but instead,
we pass a list of strings into the square brackets. Pay attention to the double square brackets:

dataframe[[column name 1, column name 2, column name 3, ...]]

>>> df[['User Name', 'Age', 'Gender']]

 User Name Age Gender

0 Forrest Gump 50 M

1 Mary Jane 30 F

2 Harry Porter 20 M

3 Jean Grey 30 F

pandas get rows

We can use .loc[] to get rows. Note the square brackets here instead of the parenthesis (). The
syntax is like this: df.loc[row, column]. column is optional, and if left blank, we can get the entire row.
Because Python uses a zero-based index, df.loc[0] returns the first row of the dataframe.

Get one row

>>> df.loc[0]

User Name Forrest Gump

Country USA

City New York

Gender M

Age 50

Name: 0, dtype: object

>>> df.loc[2]

User Name Harry Porter

Country UK

City London

Gender M

Age 20

Name: 2, dtype: object

Get multiple rows

We’ll have to use indexing/slicing to get multiple rows. In pandas, this is done similar to how to
index/slice a Python list.

To get the first three rows, we can do the following:

>>> df.loc[0:2]

 User Name Country City Gender Age

0 Forrest Gump USA New York M 50

1 Mary Jane CANADA Tornoto F 30

2 Harry Porter UK London M 20

pandas get cell values

To get individual cell values, we need to use the intersection of rows and columns. Think about how
we reference cells within Excel, like a cell “C10”, or a range “C10:E20”. The follow two approaches
both follow this row & column idea.

Square brackets notation

Using the square brackets notation, the syntax is like this: dataframe[column name][row index]. This is
sometimes called chained indexing. An easier way to remember this notation is: dataframe[column
name] gives a column, then adding another [row index] will give the specific item from that column.

Let’s say we want to get the City for Mary Jane (on row 2).

>>> df['City'][1]

'Tornoto'

To get the 2nd and the 4th row, and only the User Name, Gender and Age columns, we can pass the rows and columns as two lists like the below.

>>> df[['User Name', 'Age', 'Gender']].loc[[1,3]]

 User Name Age Gender

1 Mary Jane 30 F

3 Jean Grey 30 F

Remember, df[['User Name', 'Age', 'Gender']] returns a new dataframe with only three columns. Then .loc[[1,3]] returns the 1st and 4th rows of that dataframe.

.loc[] method

As previously mentioned, the syntax for .loc is df.loc[row, column]. Need a reminder on what are the
possible values for rows (index) and columns?

>>> df.index

RangeIndex(start=0, stop=4, step=1)

>>> df.columns

Index(['User Name', 'Country', 'City', 'Gender', 'Age'], dtype='object')

Let’s try to get the country name for Harry Porter, who’s on row 3.

>>> df.loc[2,'Country']

'UK'

To get the 2nd and the 4th row, and only the User Name, Gender and Age columns, we can pass the
rows and columns as two lists into the “row” and “column” positional arguments.

>>> df.loc[[1,3],['User Name', 'Age', 'Gender']]

 User Name Age Gender

1 Mary Jane 30 F

3 Jean Grey 30 F

Source: https://pythoninoffice.com/get-values-rows-and-columns-in-pandas-dataframe/

