
1

Excel VBA - Cells Property
As well as referring to cells on a spreadsheet with Range you can use Cells.

The Cells property has an Item property that you use to reference the cells

on your spreadsheet:
Cells.Item(Row, Column)

The Row is always a number. But the column can be a number or letter:

Cells.Item(1, 1)

Cells.Item(1, "A")

Both the lines above refer to the cell A1.

You can shorten this even further and get rid of the Item property

altogether:
Cells(1, 1)

Cells(1, "A")

The reason why we're discussing the Cells property is because it's very

useful in programming loops. That's because you can replace the numbers

between round brackets with a value from your loop. Let's clear that up.

Create another Sub in your coding window from the previous section. Call

it CellsExample. Add the following code:
Dim StartNumber As Integer
Dim EndNumber As Integer

EndNumber = 5

https://www.homeandlearn.org/excel_vba_for_loops.html

2

For StartNumber = 1 To EndNumber

Cells(StartNumber, "A").Value = StartNumber

Next StartNumber

The only difference between this For loop and the last one in the previous

section is this line:
Cells(StartNumber, "A").Value = StartNumber

Because the StartNumber gets 1 automatically added to it each time round

the loop, we can use it between the round brackets of Cells. So the code is

doing this:
Cells(1, "A").Value = 1
Cells(2, "A").Value = 2
Cells(3, "A").Value = 3
Cells(4, "A").Value = 4
Cells(5, "A").Value = 5

Or we could keep the Row number the same and change the column

number:

Cells(1, StartNumber).Value = StartNumber

Or we could do both:

Cells(StartNumber, StartNumber).Value = StartNumber

The above code will get us a diagonal line form cell A1 to cell E5, which

each cell filled with the numbers 1 to 5.

https://www.homeandlearn.org/excel_vba_for_loops.html
https://www.homeandlearn.org/excel_vba_for_loops.html

3

The point is, though, that we can manipulate the cells on a spreadsheet by

using just a number from our loop and the Cells property.

You can use Offset with cells, too. In this next exercise, we'll do the 10

times table. It will look like this:

Create a new Sub and call it TimesTable. Set up the following four Integer

variables, first:
Dim StartNumber As Integer
Dim EndNumber As Integer
Dim answer As Integer
Dim TimesTable As Integer

Now put a value of 10 in two of them:

EndNumber = 10
TimesTable = 10

This time, our end number is 10. We've also specified 10 for

the TimesTable variable.

The first line of the For loop is as before:
For StartNumber = 1 To EndNumber

And so is the end of the loop:

4

Next StartNumber

In between For and Next the first line is this:
answer = StartNumber * TimesTable

To work out what this does, start on the right of the equal sign:

StartNumber * TimesTable

The TimesTable variable will always be 10. But the StartNumber variable

changes each time round the loop. The first time round the loop we'll have

this:

1 * 10

The second time round the loop we'll have this:

2 * 10

The third time it's:

3 * 10

And so on, right up to 10 times 10.

Each time VBA works out the result of the multiplication, it stores it in the

variable called answer.

The next line of the code is this:

Cells(StartNumber, 1).Value = StartNumber & " times " & TimesTable
& " = "

5

It's rather a long line, so let's break it down to see what's happening.

To the right of the equal sign, we have this:

StartNumber & " times " & TimesTable & " = "

We're using three concatenation symbols, here (&). So we're joining four

things together:

StartNumber
" times "

TimesTable
" = "

We're joining together: the StartNumber variable, the direct text " times ",

the TimesTable variable, and the direct text " = ".

Once VBA has stitched all this together it will place the result into whatever

is on the left of the equal sign. Which is this:

Cells(StartNumber, 1).Value

So the result of the concatenation is being stored in the Value property

of Cells. The cells we're accessing will change because of what we have

between the round brackets:
StartNumber, 1

StartNumber will change each time round the loop, but the hard-coded 1

means the "A" column. So it will be this, the first few times round:

Cells(1, "A")
Cells(2, "A")
Cells(3, "A")
Cells(4, "A")

6

The third and final line to add to your For loop is this:
Cells(StartNumber, 1).Offset(, 1).Value = answer

The Offset moves the column over 1 from where we were, which was the A

column. Whatever is in the answer variable is what will be used as the

Value for the cells being referred to with Offset.

The whole of your code should now look like this:

Try it out. When your run the code you should see the same values as ours

(We've formatted the cells slightly):

7

And there you go - the 10 times table using For loops, Cells, and Offset. But

before we move on, try these exercises.

Exercise

Make one single change to your code to display the 12 times table up to a

value of 120.
Exercise

Make another single change to print out the 12 times table up to a value

240.

Source:

http://www.homeandlearn.org/the_cells_property.html

