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IMPORTANCE Acute respiratory distress syndrome (ARDS) is a life-threatening form of
respiratory failure that affects approximately 200 000 patients each year in the United
States, resulting in nearly 75 000 deaths annually. Globally, ARDS accounts for 10% of
intensive care unit admissions, representing more than 3 million patients with ARDS annually.

OBJECTIVE To review advances in diagnosis and treatment of ARDS over the last 5 years.

EVIDENCE REVIEW We searched MEDLINE, EMBASE, and the Cochrane Database of
Systematic Reviews from 2012 to 2017 focusing on randomized clinical trials, meta-analyses,
systematic reviews, and clinical practice guidelines. Articles were identified for full text
review with manual review of bibliographies generating additional references.

FINDINGS After screening 1662 citations, 31 articles detailing major advances in the diagnosis
or treatment of ARDS were selected. The Berlin definition proposed 3 categories of ARDS
based on the severity of hypoxemia: mild (200 mm Hg<PaO2/FIO2�300 mm Hg), moderate
(100 mm Hg<PaO2/FIO2�200 mm Hg), and severe (PaO2/FIO2 �100 mm Hg), along with
explicit criteria related to timing of the syndrome’s onset, origin of edema, and the chest
radiograph findings. The Berlin definition has significantly greater predictive validity for
mortality than the prior American-European Consensus Conference definition. Clinician
interpretation of the origin of edema and chest radiograph criteria may be less reliable in
making a diagnosis of ARDS. The cornerstone of management remains mechanical
ventilation, with a goal to minimize ventilator-induced lung injury (VILI). Aspirin was not
effective in preventing ARDS in patients at high-risk for the syndrome. Adjunctive
interventions to further minimize VILI, such as prone positioning in patients with a PaO2/FIO2

ratio less than 150 mm Hg, were associated with a significant mortality benefit whereas
others (eg, extracorporeal carbon dioxide removal) remain experimental. Pharmacologic
therapies such as β2 agonists, statins, and keratinocyte growth factor, which targeted
pathophysiologic alterations in ARDS, were not beneficial and demonstrated possible harm.
Recent guidelines on mechanical ventilation in ARDS provide evidence-based
recommendations related to 6 interventions, including low tidal volume and inspiratory
pressure ventilation, prone positioning, high-frequency oscillatory ventilation, higher vs
lower positive end-expiratory pressure, lung recruitment maneuvers, and extracorporeal
membrane oxygenation.

CONCLUSIONS AND RELEVANCE The Berlin definition of acute respiratory distress syndrome
addressed limitations of the American-European Consensus Conference definition,
but poor reliability of some criteria may contribute to underrecognition by clinicians.
No pharmacologic treatments aimed at the underlying pathology have been shown
to be effective, and management remains supportive with lung-protective mechanical
ventilation. Guidelines on mechanical ventilation in patients with acute respiratory
distress syndrome can assist clinicians in delivering evidence-based interventions that
may lead to improved outcomes.
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T he acute respiratory distress syndrome (ARDS) was
first described 50 years ago as a form of respiratory fail-
ure that closely resembled respiratory distress syndrome

in infants.1 This life-threatening condition can be caused by a vari-
ety of pulmonary (eg, pneumonia, aspiration) or nonpulmonary
(eg, sepsis, pancreatitis, trauma) insults, leading to the devel-

opment of nonhydrostatic
pulmonary edema. ARDS is
characterized by an acute,
diffuse, inflammatory lung
injury, leading to increased
alveolar capillary permeabil-
ity, increased lung weight,
and loss of aerated lung tis-
sue. Clinically, this mani-
fests as hypoxemia, with bi-
lateral opacities on chest
radiography, associated with
decreased lung compliance
and increased venous admix-
ture and physiological dead

space. Morphologically, diffuse alveolar damage is seen in the acute
phase of ARDS.

ARDS affects approximately 200 000 patients annually in
the United States, resulting in nearly 75 000 deaths, more than
breast cancer or HIV infection.2 Globally, ARDS affects approxi-
mately 3 million patients annually, accounting for 10% of inten-
sive care unit (ICU) admissions, and 24% of patients receiving
mechanical ventilation in the ICU.3 Despite decades of research,
treatment options for ARDS are limited. Supportive care with
mechanical ventilation remains the mainstay of management.4

Mortality from ARDS remains high, ranging from 35% to 46%
with higher mortality being associated with greater degrees of
lung injury severity at onset.3 Survivors may have substantial and
persistent physical, neuropsychiatric, and neurocognitive morbid-
ity that has been associated with significantly impaired quality of
life, as long as 5 years after the patient has recovered from
ARDS.5-7 Given the public health burden of ARDS, we reviewed
what advances in diagnosis and treatment of ARDS have been
reported between the years 2012 and 2017. We also highlight
ongoing areas of uncertainty regarding the definition and best
practices, as well as the need for future research.

Methods
A review of MEDLINE, EMBASE, and the Cochrane Database of Sys-
tematic Reviews was conducted, including publications from 2012
to 2017 using specific search strategies. Our primary search used the
terms acute respiratory distress syndrome, adult respiratory dis-
tress syndrome, ARDS, acute lung injury, and ALI. We restricted ar-
ticles to adult (aged �18 years) human data reported in the English
language only. Articles were screened that were published from
January 1, 2012, to December 1, 2017, and excluded opinion ar-
ticles, commentaries, case series, and cohort studies—focusing on
randomized clinical trials (RCTs), meta-analyses, systematic re-
views, and clinical practice guidelines. After screening 1662 titles and
abstracts, more articles were identified for full text review, after

which manual review of bibliographies generated additional refer-
ences. A total of 114 full text articles were reviewed, of which 31 were
selected with relevant content (eFigure in the Supplement). Only
articles that were considered to provide major advances in the di-
agnosis or treatment of ARDS were selected for review.

Results
Major Advances in Diagnosis
The first description of ARDS in 1967 described a clinical syndrome
of severe dyspnea, tachypnea, cyanosis refractory to oxygen therapy,
loss of lung compliance, and diffuse alveolar infiltrates on chest ra-
diograph; however, no specific criteria were articulated. After 1967,
several definitions were proposed but none were widely accepted
until the 1994 American-European Consensus Conference (AECC)
definition was established (Table 1).9 The AECC defined ARDS as the
acute onset of hypoxemia with bilateral infiltrates on a frontal chest
radiograph (Figure 1), with no clinical evidence of left atrial hyper-
tension (or pulmonary artery wedge pressure �18 mm Hg when
measured). The degree of the hypoxemia was assessed by the ratio
of partial pressure of arterial oxygen normalized to the fraction of
inspired oxygen (PaO2/FIO2), to account for the fact that PaO2 var-
ies with FIO2. For the diagnosis of ARDS, the PaO2/FIO2 ratio had to
be 200 mm Hg or less. An overarching entity—acute lung injury—
was also introduced, using similar criteria but with a less-severe hy-
poxemia threshold (ie, PaO2/FIO2 �300 mm Hg). Although the broad
use of a single definition helped to advance the field by facilitating
comparisons among different studies, a number of limitations of the
AECC definition emerged. These included the lack of explicit crite-
ria for the timing of onset relative to the injury or illness thought to
cause ARDS, the use of the PaO2/FIO2 ratio to define ARDS but no
specification of how this was measured relative to the use of cer-
tain ventilator settings that can influence this measurement
(eg, higher positive end-expiratory pressure [PEEP] can increase
the PaO2/FIO2 ratio), poor interobserver reliability of the chest ra-
diograph criterion, and difficulties with excluding volume overload
or congestive heart failure as the primary cause for the respiratory
failure (Table 1).8

ARDS acute respiratory distress
syndrome

Crs compliance of the respiratory system

ECCO2R extracorporeal carbon
dioxide removal

FIO2 fraction of inspired oxygen

HFOV high-frequency oscillatory
ventilation

KGF keratinocyte growth factor

PaO2 partial pressure of arterial oxygen

PEEP positive end-expiratory pressure

VILI ventilator-induced lung injury

VFD ventilator-free day

Key Points
Question What advances in diagnosis and treatment of acute
respiratory distress syndrome (ARDS) have been introduced in the
last 5 years?

Findings The diagnosis of ARDS is based on fulfilling the Berlin
definition criteria for timing of the syndrome’s onset, origin of
edema, chest radiograph findings, and hypoxemia. Few
pharmacologic treatments are available and management remains
supportive largely based on physiological approaches to
lung-protective mechanical ventilation.

Meaning The Berlin definition of ARDS addressed limitations from
prior definitions but poor reliability of some criteria may
contribute to underrecognition. Clinical guidelines can assist
clinicians in the evidence-based use of 6 interventions related to
mechanical ventilation and extracorporeal membrane
oxygenation.
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The Berlin Definition of ARDS
Given the limitations of the AECC definition, the European Society
of Intensive Care Medicine (ESICM) convened an international ex-
pert panel to revise the ARDS definition. The resulting Berlin defi-

nition of ARDS was also endorsed by the American Thoracic Soci-
ety (ATS) and the Society of Critical Care Medicine (SCCM).10

To facilitate estimation of the prognosis of ARDS, the Berlin
definition classifies the severity of ARDS into 3 categories: mild

Table 1. Comparison of the American-European Consensus Conference (AECC) and Berlin Definitions
of Acute Respiratory Distress Syndrome (ARDS)

AECC Current Berlin Definition10

Definition8 Limitations
How AECC Limitations
Were Addressed Definition

Timing Acute onset No definition of acute Acute time frame
specified

Within 1 week of a known
clinical insult or new or
worsening respiratory
symptoms

ALI
category

All patients
with PaO2/FIO2
≤300 mm Hg

ALI often misinterpreted
as only referring to
patients with
PaO2/FIO2 = 201-300 mm
Hg, leading to confusing
“ALI/ARDS” term

3 mutually exclusive
subgroups of ARDS
by severity; ALI
term removed

Mild: 200 mm Hg
< PaO2/FIO2 ≤ 300 mm Hg
with PEEP or CPAP
≥5 cm H2O; moderate:
100 mm Hg
< PaO2/FIO2 ≤ 200 mm Hg;
severe: PaO2/FIO2
≤ 100 mm Hg

Oxygenation PaO2/FIO2
≤300 mm Hg
(regardless
of PEEP)

Inconsistency of
PaO2/FIO2 ratio due
to the effect of PEEP
and FIO2

Minimal PEEP level added
across subgroups; FIO2
effect less relevant in
severe ARDS subgroup

Mild: PEEP or CPAP ≥5 cm
H2O; moderate or severe:
PEEP ≥5 cm H2O

Chest
radiograph

Bilateral infiltrates
observed on
frontal chest
radiograph

Poor inter-observer
reliability of chest
radiograph interpretation

Chest radiograph criteria
clarified; example
radiographs created8

Bilateral opacities—not fully
explained by effusions, lobar
or lung collapse, or nodules

PAWP PAWP ≤18 mm Hg
when measured
or no clinical
evidence
of left atrial
hypertension

High PAWP and ARDS
may coexist; poor
interobserver reliability
of PAWP and clinical
assessments of left atrial
hypertension

PAWP requirement
removed; hydrostatic
edema not the primary
cause of respiratory
failure; clinical vignettes
created to help exclude
hydrostatic edema8

Respiratory failure not
fully explained by cardiac
failure or fluid overload

Risk factor None Not formally included
in definition

Included (eg, pneumonia,
trauma, sepsis,
pancreatitis); when none
identified, need to
objectively rule out
hydrostatic edema

Need objective assessment
(eg, echocardiography) to
exclude hydrostatic edema if
no risk factor present

Abbreviations: AECC,
American-European Consensus
Conference; ALI, acute lung injury;
ARDS, acute respiratory distress
syndrome; CPAP, continuous positive
airway pressure; FIO2, fraction of
inspired oxygen; PaO2, partial
pressure of arterial oxygen;
PAWP, pulmonary artery wedge
pressure; PEEP, positive
end-expiratory pressure.

Figure 1. Typical Chest Radiograph and Computed Tomographic Scan of Patients With ARDS

A Chest radiograph of a patient with ARDS B Computed tomography scan of a patient with ARDS

ARDS indicates acute respiratory distress syndrome. The radiographic findings
are characteristic of ARDS. A, The chest radiograph demonstrates diffuse
bilateral pulmonary infiltrates. B, The computed tomographic scan of the thorax

demonstrates that the distribution of the bilateral infiltrates is predominantly in
the dependent regions, with more aerated lung in the nondependent regions.
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(200 mm Hg < PaO2/FIO2 � 300 mm Hg), moderate (100 mm Hg
< PaO2/FIO2 � 200 mm Hg), and severe (PaO2/FIO2 � 100 mm Hg)
(Table 1). These strata were validated in a patient-level meta-
analysis of 4188 patients with ARDS showing a hospital mortality of
27% (95% CI, 24%-30%) for mild ARDS, 32% (95% CI, 29%-34%)
for moderate ARDS, and 45% (95% CI, 42%-48%) for severe ARDS.
Among survivors, mild ARDS is associated with 5 days (interquar-
tile range [IQR], 2-11]) of mechanical ventilation, moderate ARDS with
7 days (IQR, 4-14), and severe ARDS with 9 days (IQR, 5-17).10

Areas of Uncertainty
Although the Berlin definition overcame several of the AECC’s limi-
tations in defining ARDS, the 4 main clinical features required for es-
tablishing a diagnosis of ARDS (ie, timing of respiratory failure in re-
lation to the inciting event, nonhydrostatic origin of pulmonary
edema, chest radiograph findings, and degree of hypoxemia) are
similar in the AECC and Berlin criteria. Establishing the cause of pul-
monary edema and interpreting chest radiographs necessary for ful-
filling the ARDS diagnostic criteria are 2 areas in which clinician in-
terpretation may lead to failure to recognize ARDS when it is present,
leading to undertreatment of the disease.3 The Berlin definition of
ARDS provides a more explicit definition of the chest radiograph cri-
terion for bilateral opacities by stating that they should be consis-
tent with pulmonary edema not fully explained by effusions, lobar
or lung collapse, nodules, or masses (Figure 1). A reference set of
chest radiographs was included to illustrate findings that may be con-
sistent, inconsistent, or equivocal for the diagnosis of ARDS.8 De-
spite a more precise definition of the radiographic findings that
should be used to diagnose ARDS and the inclusion of sample ra-
diographs, interobserver reliability of the chest radiograph crite-
rion remains suboptimal and is not improved with structured train-
ing or education.11 Future revisions to the ARDS definition must
consider whether bilateral infiltrates should remain as an essential
component of the syndrome's definition (ie, whether they are linked
to a pathological mechanism for the development of ARDS or a re-
sponse to specific treatments). If not, consideration should be given
to removing this criteria from future ARDS definitions or substitut-
ing it with other modalities (eg, computed tomography, lung ultra-
sound) should they be proven more reliable in future studies.

Interestingly, the inclusion of additional physiological mea-
surements that have previously been associated with greater
ARDS severity and worse outcomes (ie, respiratory system com-
pliance [Crs] �40 mL/cm H2O and corrected minute ventilation
�10 L/min) did not contribute to the predictive validity of severe
ARDS. If a biomarker that enhanced the sensitivity and specificity
for diagnosing ARDS or classifying its severity could be identified,
it would be very useful.12 Despite being an area of intense re-
search, to date, no biomarkers are sufficiently informative to
include them in a definition of ARDS. More direct and reproduc-
ible methods of measuring pulmonary vascular permeability and
extravascular lung water are needed.

Major Studies and Advances in Therapy
There are relatively few treatments available for ARDS. The cor-
nerstone of management is mechanical ventilation, with a goal
to minimize ventilator-induced lung injury (VILI).13 VILI is a form of
iatrogenic, secondary lung injury that can potentiate a systemic
inflammatory response, contributing to the development of multi-

organ failure and death. A sample treatment algorithm for ARDS
typically begins with optimization of lung protective ventilation,
and proceeds through increasingly invasive interventions based
on physiological goals for gas exchange (Figure 2). Additional
interventions may differ depending on the individual patient, the
inciting cause, and the interventions available at the treating
facility.16 Recent major advances in potential therapies for ARDS
are briefly reviewed in Table 2. These include the use of extracor-
poreal carbon dioxide removal (ECCO2R), prone positioning,
statins, high-frequency oscillatory ventilation (HFOV), and lung
recruitment maneuvers.

Prevention
Given the substantial morbidity and mortality associated with ARDS,
prevention is important. Platelets may contribute to both the de-
velopment and resolution of lung injury, making them a potential
therapeutic target.29 Supporting this hypothesis are observational
data suggesting antiplatelet therapy with aspirin may prevent ARDS
in high-risk patients.30 To evaluate the safety and efficacy of
aspirin for the prevention of ARDS, a multicenter RCT was con-
ducted in patients with elevated risk of ARDS (ie, lung injury predic-
tion score �431).17 Eligible patients were randomized to a loading
dose (325 mg) followed by 81 mg daily of aspirin or placebo within
24 hours of presentation to the emergency department and con-
tinued until hospital day 7, hospital discharge, or death. There was
no significant difference between groups in the primary outcome
of ARDS incidence (odds ratio [OR], 1.24 [95% CI, 0.67-2.31]). There
were no significant differences in any secondary outcomes
(ventilator-free days [VFDs], length of stay, 28-day survival, and
1-year survival) or adverse events. These findings do not support the
use of aspirin in at-risk patients.

Adjunctive Therapies
VILI may progress despite the use of lung-protective venti-
lation.32,33 Reduced tidal volume may cause less VILI, resulting in
better patient outcomes.34 This strategy may be limited by the
resultant hypercapnia and respiratory acidosis. Extracorporeal
carbon dioxide (CO2) removal (ECCO2R) takes CO2 out of blood
through an extracorporeal gas exchanger.35 Consequently, less
CO2 has to be removed by the lungs, reducing the intensity of ven-
tilatory support (eg, lower tidal volumes) facilitating the applica-
tion of ultraprotective ventilation (ie, any form of low-volume or
low-pressure ventilation beyond the current standard of care).
This approach was tested in a small RCT comparing ECCO2R with
tidal volumes of 3 mL/kg predicted body weight to a conventional
6 mL/kg predicted body weight tidal volume strategy.18 There
were no significant differences in the primary outcome of
ventilator-free days (VFDs) to day 28 or day 60 between groups.
A post hoc analysis in patients with a PaO2/FIO2 ratio of 150 mm Hg
or less demonstrated significantly greater VFDs to day 28 and day
60 in the ECCO2R group compared with controls (day 28: 11.3 in
the ECCO2R group vs 5.0 in the control group, P = .03; day 60:
40.9 in the ECCO2R group vs 28.2 in the control group, P = .03).
This result is hypothesis-generating and ECCO2R remains an experi-
mental therapy, as supported by the results of a recent systematic
review.36 More data will become available from 2 ongoing
trials—the Strategy of Ultraprotective Lung Ventilation With Extra-
corporeal CO2 Removal for New-Onset Moderate to Severe ARDS
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(SUPERNOVA) trial and the Protective Ventilation With Veno-
Venous Lung Assist in Respiratory Failure (REST) trial. Because
ECCO2R is relatively invasive, a key question is how to identify
those patients most likely to benefit from this therapy. A recent
physiological analysis suggested that a precision medicine
approach utilizing measurements of a patient’s pulmonary dead
space and the compliance of the respiratory system (calculated as
Crs = VT/Pplat − PEEP, where Pplat indicates the pressure measured
after a 0.5-second end-inspiratory pause when there is no flow and
VT indicates tidal volume) could help predict which ARDS patients
are most likely to benefit from ECCO2R treatment.37

VILI may also be reduced by placing patients in the prone
position. Prone positioning facilitates more homogeneous lung
inflation, resulting in a more uniform distribution of mechanical
forces throughout the injured lung.38 A series of increasingly
refined clinical trials (ie, successively targeting patients with more
severe ARDS and using longer duration of prone positioning) over
the last 20 years39 culminated in a large multicenter RCT demon-
strating that placing ARDS patients with a PaO2/FIO2 ratio of
150 mm Hg or less in the prone position for at least 16 hours/d sig-
nificantly reduced 90-day mortality (hazard ratio [HR], 0.44
[95% CI, 0.29-0.67]).19 There were no differences in adverse
effects between groups, except a significantly greater number of
cardiac arrests in the supine group (31 in the supine group vs 16 in
the prone group; P = .02). The centers participating in this RCT
were highly experienced with prone positioning, suggesting that
facilities desiring to implement this practice should develop
expertise with prone positioning if they expect to have similar
results to those observed in the RCT.40,41

Pharmacologic Therapies
Alveolar flooding and pulmonary edema formation are important
pathophysiological derangements in patients with ARDS. Experi-
mental data have shown that β2 agonists can increase sodium trans-
port by activating β2 receptors on alveolar type I and type II cells,
accelerating resolution of pulmonary edema.42 This hypothesis was
tested in a single-center, phase 2 RCT demonstrating that a 7-day
infusion of salbutamol significantly reduced extravascular lung
water.43 A subsequent multicenter RCT of 7 days of intravenous
salbutamol was stopped early due to increased 28-day mortality in
the salbutamol group (risk ratio [RR], 1.47 [95% CI, 1.03 to 2.08]).20

This lack of efficacy is consistent with 2 other RCTs using inhaled
salbutamol—one in patients with ARDS (mean difference in VFD to
day 28, −2.2 days [95% CI, −4.7 to 0.3])44 and the other in peri-
operative patients to prevent development of ARDS (OR, 1.25 [95%
CI, 0.71 to 2.22]).45

Because injury to the alveolar epithelium is an important cause
of ARDS, acceleration of alveolar epithelial repair may facilitate reso-
lution of pulmonary edema and lung injury.46 Keratinocyte growth
factor (KGF) is important in alveolar epithelial repair, and experi-
mental and human studies47 support the concept that KGF may be
beneficial in patients with ARDS. In a phase 2 RCT, there was no sig-
nificant difference in mean oxygenation index at day 7 (mean dif-
ference, 19.2 [95% CI, −5.6 to 44.0]) in patients randomized to re-
combinant human KGF or placebo for 6 days.21 However, there was
evidence of harm from KGF, with those patients having signifi-
cantly fewer VFDs, longer duration of mechanical ventilation, and
higher 28-day mortality.

Figure 2. A Sample Treatment Algorithm for Patients With ARDS

Patient meets Berlin definition for ARDS
Acute onset
Respiratory failure not primarily due to hydrostatic edema
Bilateral opacities on chest radiograph

Initial assessment and management
Diagnose and treat underlying cause of ARDS
Measure patient height and calculate predicted body weight
Start oxygen therapy and ventilatory support according 
to disease severitya

Controlled mechanical ventilation
Target tidal volume 6 mL/kg predicted body 
weight and Pplat ≤ 30 cm H2Ob

Consider higher PEEP in moderate 
and severe ARDSc

Keep PaO2 55-80 mm Hg or SpO2 88%-95% 
and pH ≥ 7.25

Mild ARDS
200 mm Hg < PaO2/FIO2 
≤ 300 mm Hg 
with PEEP or CPAP ≥ 5 cm H2O

Moderate ARDS
100 mm Hg < PaO2/FIO2 
≤ 200 mm Hg 
with PEEP ≥ 5 cm H2O

Severe ARDS
PaO2/FIO2 ≤ 100 mm Hg
with PEEP ≥ 5 cm H2O

Is patient receiving
noninvasive ventilation?

Is PaO2/FIO2 ≤ 150 mm Hg?

Is PaO2/FIO2 ≤ 80 mm Hg?

Is patient clinically stable,
PaO2/FIO2 > 200 mm Hg, 
and tolerating 
noninvasive ventilation?

Yes

No

No

No

Yes

No

Consider continuing 
noninvasive ventilation

Continue current strategy and deescalate 
interventions when possible after patient improves

If patient deteriorates, 
reassess strategy

Start deep sedation and prone positioningd

Consider neuromuscular blocking agent 
and lung recruitment maneuvere

Consider alternative therapies on a 
case-by-case basis (eg, VV ECMO,f HFOVg)

Yes

Yes

ARDS indicates acute respiratory distress syndrome; CPAP, continuous positive
airway pressure; HFOV, high-frequency oscillatory ventilation; FIO2, fraction of
inspired oxygen; PEEP, positive end-expiratory pressure; Pplat, pressure
measured after a 0.5-second end-inspiratory pause when there is no flow; SpO2,
oxygen saturation as measured by pulse oximetry; VV ECMO, venovenous
extracorporeal membrane oxygen.
a Initial ventilator support may be delivered noninvasively, particularly in

patients with less-severe hypoxemia.
b Strong recommendation for the use of low tidal volume and inspiratory

pressure in all patients with ARDS.14

c Conditional recommendation for the use of higher (vs lower) PEEP in patients
with moderate or severe ARDS. A starting point would be to implement the
higher PEEP strategy used in the large randomized clinical trials.14

d Strong recommendation for the use of prone positioning more than 12 hours/d
in patients with severe ARDS.14

e Conditional recommendation for the use of lung recruitment maneuvers in
patients with moderate or severe ARDS.14

f No recommendation on the use of VV ECMO in patients with severe ARDS.14

g Strong recommendation against the routine use of HFOV in patients with
moderate or severe ARDS,14 but can consider its use in patients with refractory
hypoxemia (ie, PaO2/FIO2 <64 mm Hg).15
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Inflammation is another pathological hallmark of ARDS, and may
contribute to both pulmonary and nonpulmonary organ failure.
Statins can reduce inflammation and progression of lung injury in
experimental models48,49 and were shown to be safe and to re-
duce nonpulmonary organ dysfunction in a phase 2 RCT.50 Two large
multicenter RCTs were conducted to examine the effect of statins
in patients with ARDS. In the Statins for Acutely Injured Lungs from
Sepsis (SAILS) trial there was no significant difference (rosuvasta-
tin vs placebo) in 60-day in-hospital mortality (28.5% for rosuvas-
tatin vs 24.9% for placebo; P = .21) or in VFDs to day 28 (15.1 days
for rosuvastatin vs 15.1 days for placebo; P = .96).22 In the Hydroxy-
methylglutaryl-CoA Reductase Inhibition with Simvastatin in Acute
Lung Injury to Reduce Pulmonary Dysfunction-2 (HARP-2) trial there
was no significant difference (simvastatin vs placebo) in the VFDs
to day 28 (12.6 days for simvastatin vs 11.5 days for placebo; P = .21),
nonpulmonary organ failure–free days (19.4 days for simvastatin vs
17.8 days for placebo; P = .11), or 28-day mortality (22.0% for sim-
vastatin vs 26.8% for placebo; P = .23).23

Despite the strong pathophysiological rationale and preclini-
cal data, there is currently no role for β2 agonists, KGF, and statins
in the routine management of patients with ARDS.

Ventilatory Strategies
The goal of mechanical ventilation in patients with ARDS is to rest
the respiratory muscles, and maintain adequate gas exchange, while
mitigating the deleterious effects of VILI (Table 3). Strategies
to achieve these objectives have focused on limiting tidal stress
(volutrauma) and cyclic tidal recruitment at the interface between
collapsed and aerated lung regions (atelectrauma).13 The latter is
based on the “open lung hypothesis,” which focuses on recruiting
collapsed lung units and keeping them open throughout the venti-
latory cycle.51 Two strategies to achieve these goals were the sub-
ject of recent RCTs: HFOV and lung recruitment maneuvers.

Theoretically, HFOV represents an ideal lung protective strat-
egy, delivering very small tidal volumes (limiting volutrauma) around
a relatively high mean airway pressure (limiting atelectrauma).21

A large body of experimental and clinical evidence supported the
potential benefits of HFOV in ARDS.52,53 Two large, multicenter
RCTs were performed to evaluate the efficacy of HFOV in patients
with moderate and severe ARDS. The Oscillation in ARDS
(OSCAR) trial randomized patients to HFOV or usual ventilatory
care, targeting modest physiological goals.24 There was no sig-
nificant difference in the primary outcome of 30-day mortality
(41.7 for HFOV vs 41.1% for usual ventilatory care; P = .85). In the
Oscillation for Acute Respiratory Distress Syndrome Treated Early
(OSCILLATE) trial, patients were randomized to HFOV or conven-
tional ventilation using relatively high levels of PEEP.25 The trial
was stopped early for safety reasons after enrolling 548 of
a planned 1200 patients. In-hospital mortality was signifi-
cantly higher in the HFOV group (RR, 1.33 [95% CI, 1.09-1.64]).
The increased mortality in the HFOV group was likely due to
the negative hemodynamic consequences (as evidenced by the
use of more vasoactive drugs in this group) due to higher mean
airway pressures. This is a reminder of the importance of integra-
tive physiology in the care of patients with ARDS. Ventilatory
strategies should focus on mitigating VILI, but these strategies
must consider the broader perspective of cardiopulmonary
interactions (eg, the effect of ventilation on right ventricular
function).54,55 Collectively, these trials do not support the routine
use of HFOV in patients with ARDS. However, an individual
patient-data meta-analysis suggested that HFOV may improve
survival in patients with very severe hypoxemia during conven-
tional mechanical ventilation (ie, PaO2/FIO2 <64 mm Hg).15

Lung recruitment maneuvers are interventions that increase
airway pressures to open collapsed lung units. These maneuvers
are usually associated with improvements in oxygenation and

Table 3. Current and Future Approaches to the Ventilatory Management of Acute Respiratory Distress Syndrome (ARDS)

Lung Injury Mechanism Clinical Response Potential Tools and Monitoring Potential Future Research
Traditional Forms of Ventilator-Induced Lung Injury

Volutrauma (alveolar
overdistention)

Reduce VT; reduce Pplat;
prone positioning

Ventilator settings and waveforms;
esophageal manometry91;
stress index92

Evaluate a strategy targeting reduced driving pressure
(driving pressure = Pplat – PEEP = VT/Crs); evaluate
extracorporeal support (eg, extracorporeal carbon
dioxide removal, extracorporeal membrane
oxygenation) to minimize ventilator-induced lung
injury; evaluate use of stress index to minimize
volutrauma and atelectrauma

Atelectrauma (lung
inhomogeneity and
cyclic alveolar
recruitment and
derecruitment)

Increase PEEP; prone positioning Computed tomography scan;
positron emission tomography scan;
electrical impedance tomography93;
lung ultrasound

Other Potential Forms of Lung Injury

Ergotrauma (excessive
mechanical power94)

Reduce VT; reduce respiratory rate;
reduce PEEP

Ventilator settings and waveforms Evaluate strategy aimed at reducing mechanical power
using extracorporeal support (eg, extracorporeal
carbon dioxide removal, extracorporeal membrane
oxygenation)

Myotrauma
(diaphragmatic injury
due to inappropriate
ventilatory load95)

Titrate inspiratory ventilatory
support or sedation to physiological
loading of diaphragm

Esophageal manometry; diaphragm
ultrasound96; electrical activity
of the diaphragm; P0.1

Evaluate diaphragm-protective mechanical ventilation
strategies

Patient self-inflicted
lung injury85

Deep sedation and neuromuscular
blockade

Esophageal manometry; electrical
impedance tomography; P0.1

Evaluate the optimal timing and amount of
spontaneous breathing

Patient-ventilator
dyssynchrony

Multiple interventions depending
on the specific dyssynchrony
(eg, changing VT, increase
inspiratory time, decrease sedation,
decrease trigger sensitivity)97

Ventilator waveform analysis;
esophageal manometry; electrical
activity of the diaphragm

Evaluate the efficacy of novel forms of mechanical
ventilation that may better promote patient-ventilator
synchrony (eg, neurally adjusted ventilatory assist,
proportional assist ventilation)

Abbreviations: Crs, compliance of the respiratory system; P0.1, airway occlusion
pressure during first 0.1 seconds; Pplat, plateau airway pressure; PaCO2, partial

pressure of arterial carbon dioxide; PEEP, positive end-expiratory pressure;
PET, positron emission tomography; VT, tidal volume.
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within the range of pressures typically used in clinical practice, are
generally well tolerated.56 Opening the lung with a lung recruit-
ment maneuver followed by a decremental PEEP trial to deter-
mine the least PEEP required to maintain the lung open has been
proposed as an optimal way to set PEEP in patients with
ARDS.51,57 In a multicenter pilot RCT, patients with persistent mod-
erate or severe ARDS on standardized ventilation settings (FIO2

�0.5 and PEEP �10 cm H2O) at 12 to 36 hours after ARDS onset
were randomized to the open lung approach (lung recruitment
maneuver followed by a decremental PEEP trial) or a conventional
low tidal volume, standard PEEP strategy.26 There was no signifi-
cant difference between groups in the primary outcome of 60-day
mortality (29% for the open lung approach vs 33% for the stan-
dard PEEP strategy; P = .18), or secondary outcomes of ICU mor-
tality (25% for the open lung approach vs 30% for the standard
PEEP strategy; P = .53) or VFDs to day 28 (8 days for the open
lung approach vs 7 days for the standard PEEP strategy; P = .53).
Driving pressure (calculated as Pplat − PEEP, where Pplat indicates
plateau airway pressure) and oxygenation improved significantly
at 24, 48, and 72 hours in the open lung approach group. There
was no significant difference in barotrauma rates between groups.
These results are largely consistent with that of a recent meta-
analysis reporting on 10 trials (1658 patients) in which ventilation
strategies that included lung recruitment maneuvers reduced ICU
mortality without increasing the risk of barotrauma but had no
effect on 28-day and hospital mortality.58

The potential efficacy of an open lung approach was evalu-
ated in the recently completed multicenter Alveolar Recruitment
for Acute Respiratory Distress Syndrome Trial (ART) in which
patients with moderate or severe ARDS were randomized to an
experimental strategy with a lung recruitment maneuver and
PEEP titration according to the best respiratory system compli-
ance or a control strategy of low PEEP.27 There was a significant
increase in the 28-day mortality with the experimental strategy
(HR, 1.20 [95% CI, 1.01 to 1.42]). Moreover, the experimental
strategy increased 6-month mortality (HR, 1.18 [95% CI, 1.01 to
1.38]), decreased the number of VFDs (mean difference, −1.1 days
[95% CI, −2.1 to −0.1]), increased the risk of barotrauma (differ-
ence, 4.0% [95% CI, 1.5%-6.5%]). There were no significant dif-
ferences in the length of ICU or hospital stay, or ICU or in-hospital
mortality. The mechanisms leading to these negative outcomes
are unknown, but may be related to a relatively subtle negative
physiological consequence of this strategy, which may have inad-
vertently led to increased VILI. Patients in the experimental group
were more likely to develop a form of patient-ventilator dyssyn-
chrony called breath stacking in which the ventilator delivers a
second breath before complete exhalation of the first breath.
Irrespective of the precise mechanisms, these results suggest
that the costs of an aggressive open lung approach using the ven-
tilatory strategy applied in ART outweigh the potential benefits in
unselected patients with ARDS.

In addition to mitigating VILI in patients with ARDS, avoiding en-
dotracheal intubation may prevent ventilator-associated complica-
tions (eg, ventilator-associated pneumonia), delirium, and the need
for sedation, while potentially allowing patients to communicate and
maintain oral feeding. Noninvasive ventilation could be considered
in patients with ARDS and less-severe hypoxemia, but is not com-
monly used.59 Just as in invasively ventilated patients, higher lev-

els of PEEP may be required depending on the degree of hypox-
emia; however, higher PEEP applied with a face mask interface may
be associated with increased air leak, leading to ineffective deliv-
ery of PEEP and noninvasive ventilation failure.60 An alternative is
to use a helmet interface, which may facilitate reduced air leak and
permit delivery of higher PEEP with greater patient tolerance. In a
single-center RCT, patients with ARDS already receiving face mask
noninvasive ventilation for at least 8 hours were randomized to hel-
met noninvasive ventilation or to continued face mask noninvasive
ventilation.28 The trial was stopped early for efficacy after 83 out
of a planned 206 patients were enrolled. Patients in the helmet non-
invasive ventilation group had a significantly lower rate of intuba-
tion (absolute difference, −43.3% [95% CI, −62.4% to −24.3%]), the
primary outcome. Secondary outcomes, VFDs to 28 days (28 days
for helmet noninvasive ventilation vs 12.5 days for face mask non-
invasive ventilation; P < .001) and 90-day mortality (absolute dif-
ference, −22.3% [95% CI, −43.3% to −1.4%) were also significantly
better in the helmet noninvasive ventilation group. There were no
significant differences in adverse events between groups. These
promising results require confirmation in a large, multicenter RCT,
particularly because noninvasive ventilation use in patients with
ARDS patients and a PaO2/FIO2 ratio less than 150 mm Hg has been
associated with increased mortality.59

Clinical Guidelines
The ATS, ESICM, and SCCM have recently endorsed clinical prac-
tice guidelines on mechanical ventilation in adult patients with ARDS
(Table 4).14 The guidelines provide clinical recommendations on 6
interventions including strong recommendations for the use of
volume-limited and pressure-limited ventilation and prone posi-
tioning for more than 12 hours/d in patients with severe ARDS;
a strong recommendation against the routine use of HFOV; condi-
tional recommendations for the use of lung recruitment maneu-
vers and high PEEP strategies in patients with moderate or severe
ARDS; and insufficient data to make a recommendation for or against
venovenous extracorporeal membrane oxygenation in patients with
severe ARDS.67 Of note, these recommendations were published
prior to the recent ART study demonstrating the negative conse-
quences of the open lung approach, so the conditional recommen-
dation on the use of lung recruitment maneuvers must be viewed
in this context.

Consistent with other medical conditions, the real world deliv-
ery of these evidence-based recommendations is suboptimal.3 For
instance, more than a third of patients with ARDS do not receive
pressure-limited and volume-limited lung protective ventilation,
an intervention which was shown almost 2 decades ago to have a
nearly 9% absolute mortality reduction.68 Strategies that enhance
implementation of these clinical recommendations could translate
into substantial improvements in patient outcomes.

Areas of Uncertainty
Novel methods of minimizing VILI require further investigation
before widespread adoption (Table 3).69 Despite the lack of rigor-
ous evidence of benefit,66 the use of venovenous extracorporeal
membrane oxygenation in patients with ARDS has increased dra-
matically since the influenza A(H1N1) pandemic in 2009.70,71 An
international, multicenter RCT of venovenous extracorporeal mem-
brane oxygenation in patients with severe ARDS (Extracorporeal
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Membrane Oxygenation for Severe Acute Respiratory Distress
Syndrome [EOLIA]) has recently been completed but not yet
published; the results may help clarify the role of venovenous ex-
tracorporeal membrane oxygenation in the management of ARDS.

Driving pressure is defined as the plateau airway pressure
minus PEEP, and is also mathematically equal to the ratio of tidal
volume to Crs. A recent post hoc analysis suggested that driving
pressure may be more important than other parameters (eg, tidal
volume or plateau pressure) in determining outcome in patients
with ARDS,72 and a subsequent meta-analysis confirmed an asso-
ciation between higher driving pressure and increased mortality.73

The physiological rationale for this association is appealing,
as normalizing tidal volume to Crs takes into account the reduced
proportion of lung available for ventilation (ie, the size of the
“baby lung”), rather than traditional scaling to lung size using pre-
dicted body weight. However, these results are hypothesis-
generating and the currently available data do not support using
ventilatory strategies specifically targeting driving pressure in
patients with ARDS. Future studies need to address the safety and
feasibility of a driving pressure–based protocol, as well as clinical
trials demonstrating efficacy of such a strategy over current lung
protective ventilatory protocols.74 There has been increasing
interest in the use of high-flow nasal cannula in patients with acute
hypoxemic respiratory failure,75 but no RCTs have evaluated its
use specifically in patients with ARDS.76 Future clinical trials are
needed to clarify its potential role in ARDS.

Oxygen toxicity is a form of injury due to the use of high FIO2

that has recently received renewed attention. The optimal target
for oxygenation in patients with ARDS remains unclear, sup-
ported by only low-quality evidence and expert opinion in a
recent guideline for oxygen use.77 A single-center RCT suggested
a mortality benefit for patients randomized to conservative oxy-
gen therapy (PaO2 70-100 mm Hg or SpO2 94%-98%) compared
with conventional therapy (PaO2 up to 150 mm Hg or SpO2

97%-100%).78

Many pharmacological agents that have shown promise in
patients with ARDS are currently undergoing evaluation. A single

RCT demonstrated a mortality benefit in ARDS patients with a
PaO2/FIO2 ratio less than 150 mm Hg with the early use of a cisatra-
curium infusion for 48 hours with deep sedation compared with
deep sedation alone.79 The exact mechanism by which neuromus-
cular blockade is beneficial in patients with ARDS is unclear.80

However, neuromuscular blockade would limit the occurrence of
potentially injurious phenomena during mechanical ventilation
including reverse triggering (ie, diaphragmatic muscle contractions
triggered by controlled ventilator breaths),81 pendelluft (ie, move-
ment of air within the lung from nondependent to dependent
regions without a change in tidal volume),82 and patient-ventilator
dyssynchrony (ie, in which the patient breathing efforts are not
synchronized with the ventilator-initiated breaths). The latter could
lead to breath stacking, as described above for the ART study, in
which patients may get a second breath from the ventilator before
the patient has been able to exhale the first breath.83

Given that optimal dose, timing, and monitoring are
uncertain,32 a large, multicenter RCT is currently under way com-
paring neuromuscular blockade and deep sedation with lighter
sedation and no routine neuromuscular blockade (Reevaluation
of Systemic Early Neuromuscular Blockade [ROSE] trial).84

One possible mechanism by which neuromuscular blockade
may exert its benefits is by preventing spontaneous breathing
early in patients with moderate or severe ARDS. When and how
much to allow spontaneous breathing in patients with ARDS
remains uncertain and an important challenge for clinicians
weighing the balance of potential risks (eg, patient self-inflicted
lung injury85) and benefits (eg, reduced sedation, lower risk
of delirium, ventilator-induced diaphragm dysfunction, ICU-
acquired weakness).86

Discussion
ARDS is not a disease; it is a syndrome defined by a constellation
of clinical and physiological criteria. As such, it is perhaps not
surprising that the only therapies that have been shown to be

Table 4. ATS/ESICM/SCCM Clinical Practice Guideline Recommendations for Mechanical Ventilation in Adults
With Acute Respiratory Distress Syndrome (ARDS)14

Intervention
ARDS
Severity

Quality of
Evidence
(GRADE)

Strength of
Recommendation Comments

Mechanical
ventilation with
low tidal volumes
and inspiratory
pressuresa

All ARDS Moderate61 Strong Initial tidal volume should be set at 6 mL/kg
predicted body weight and can be increased
up to 8 mL/kg predicted body weight if the
patient is double triggering or if inspiratory
pressure decreases below PEEP

Prone positioning
<12 h/d

Severe Moderate-
high62

Strong Lack of consensus for recommendation in
moderate ARDS

High-frequency
oscillatory
ventilation

Moderate
or severe

Moderate-
high63

Strong Strong recommendation against the routine use
of high-frequency oscillatory ventilation in
patients with moderate or severe ARDS, although
may be considered in patients with refractory
hypoxemia (ie, PaO2/FIO2 <64 mm Hg)

Higher PEEP Moderate
or severe

Moderate64 Conditional Can implement a higher PEEP strategy that was
used in the large randomized clinical trials
included in the evidence synthesis

Recruitment
maneuvers

Moderate
or severe

Low-
moderate65

Conditional Caution in patients with preexisting hypovolemia
or shock

Venovenous
extracorporeal
membrane
oxygenation

Severe Not
applicable66

Not applicable No recommendation for or against use due to
insufficient evidence

Abbreviations: ATS/ESICM/SCCM,
American Thoracic Society, European
Society of Intensive Care Medicine,
and the Society of Critical Care
Medicine; ECMO, extracorporeal
membrane oxygenation; FIO2, fraction
of inspired oxygen; GRADE, Grading
of Recommendations, Assessment,
Development, and Evaluation;
PaO2, partial pressure of arterial
oxygen; PEEP, positive end-expiratory
pressure.
a Low tidal volumes = 4-8 mL/kg

predicted body weight; inspiratory
pressures = plateau pressure
<30 cm H2O.
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effective are lung-protective ventilatory strategies that are based
on underlying physiological principles. A critical appreciation of
these principles is important in caring for all patients with ARDS,
in designing clinical trials for ARDS, and may be helpful in applying
precision medicine approaches to identify which patients are
most likely to benefit from a given therapy.37,87 Patients diag-
nosed with ARDS have varying underlying risk factors, different
complex premorbid and comorbid conditions, and may have dif-
ferent underlying pathophysiological disease processes.88,89 The
importance of considering this heterogeneity of treatment
effects, perhaps informed by biological subphenotypes, may like-
wise offer a way forward to ensure that potentially efficacious
treatments are not discarded.90

Limitations
This review has several limitations. First, we restricted our litera-
ture search to the past 5 years of articles published in English.

Second, we only addressed diagnostic and treatment strategies in
adults with ARDS, and not the neonatal and pediatric populations.
Third, we only evaluated a limited number of interventions.

Conclusions
The Berlin definition of acute respiratory distress syndrome ad-
dressed limitations of the American-European Consensus Confer-
ence definition, but poor reliability of some criteria may contribute
to underrecognition by clinicians. No pharmacologic treatments
aimed at the underlying pathology have been shown to be effec-
tive, and management remains supportive with lung-protective me-
chanical ventilation. Guidelines on mechanical ventilation in pa-
tients with acute respiratory distress syndrome can assist clinicians
in delivering evidence-based interventions that may lead to im-
proved outcomes.
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