

MECHANICAL VENTILATION

Critical Thinking after Intubation

NOVEMBER 6, 2018 LOVELL FHCC SIMULATION CENTER N. Lee, MD

Complexity of Mechanical Ventilation

LUNG INJURY PATHOLOGY PATIENT

Scenario: 60-year-old male. Post-op for 2 days from cardiac surgery. Oxygen saturations have been decreasing steadily with increased work of breathing and shortness of breath.

BiPAP trial: FiO₂ 100%, IPAP:EPAP = 15/5, **SpO₂: 87%**

98F 110/60 HR 122 RR 24 Weight: 75 kg

Lungs: crackles at bases; no wheezing Heart: no murmurs

Decide to intubate. Get initial ABG results below and High-Pressure alarm goes off! You had set High P_{peak} alarm setting to 40.

Scene 1

Issues to consider:

Look at alarm: it's a high peak pressure alarm. 47 is high but not extremely high. Look at your High Alarm setting level. It's currently set to alarm when > 40 cmH₂O. You reset P_{peak} alarm to 55 instead of 40. Alarm now goes away.

Why is Ppeak high? Is pt crashing? What's the BP? What pressures are the alveoli feeling? Check a Pplat. Hopefully, it's < 30 cmH₂O.

Simultaneously address HYPOXIA while checking for resistance and compliance issues.

ALWAYS FOCUS ON OXYGENATION AND ADEQUATE BP or MAP!!

Scene 2

	Condition ARDS) 	click for drop	-down list	LARMS —				
С	_{Рреак} 47	p _{mean} 17	PEEP 5	I:E 1: 4.0	_{fтот} 10	v _™ 0.65	V _{етот} 6.5		
	cmH2O	cmH2O	cmH2O		bpm	L	L/min	Current ABG	ì
								pН	7.19
								pCO ₂	66
								PaO ₂	50
								HCO ₃	24
								SaO ₂	78%
								BE	-10.5
	A/C	/ V	/C		♥ V _{trig}	75 kg			
	f 10	V _T	V _{MAX}	P _{SUPP}	Flow Sens	02 100			
	10	0.0	- 50		2	100			

10	0.6	30	2	100
1/min	L	L/min	L/min	%
Rise Time %	T _{PL}	Flow Pattern	E _{SENS}	PEEP
20	0	N	25%	5
		RAMP		cmH2O

Issues to consider:

HYPOXEMIA/HYPOXIA: Look at SaO₂ & p_aO₂: p_aO₂ of 50 & SaO₂ of 78% need fixing! MUST FIX THIS FIRST!

What ventilator settings can correct hypoxemia? $FiO_2 \& PEEP$. But, already at $FiO_2 = 100\%$. . .So, we're left with PEEP. Add 5 more of PEEP to get to a total of PEEP = 10 AND <u>check a P_{plat}!</u>

<u>**Concerns:**</u> the P_{plat} is already dangerously high at 43. Will adding more PEEP increase the P_{plat} further into danger territory—or, will the additional PEEP recruit more alveoli and consequently lower or not change the P_{plat}? Usually want to be careful when titrating PEEP to greater than 15 cm H₂O. Use ARDSNET/FiO₂ tables for lung injury pts (eg, ARDS, pneumonia, acute pulmonary edema) to guide titration of FiO2 and PEEP to maintain SaO₂ > 90%.

Lower PEEP/higher FiO2								
FiO ₂	0.3	0.4	0.4	0.5	0.5	0.6	0.7	0.7
PEEP	5	5	8	8	10	10	10	12
	•	•	•	•	•			
FiO ₂	0.7	0.8	0.9	0.9	0.9	1.0		
PEEP	14	14	14	16	18	18-24		

Scene 3

Issues to consider:

HYPOXEMIA/HYPOXIA: By adding 5 more of PEEP, SaO₂ improved to 90% & the P_{plat} actually decreased (from 43 to 39)—meaning more alveoli were recruited! Always make sure PEEP doesn't drop the venous return, BP or MAP too much! Check BP or MAP. Have IV fluids/vasopressors ready to infuse to correct for hypotension. We have an acute respiratory acidosis. Let's get the pH up a bit.

pH is < 7.2. What ventilator settings correct pH? pCO_2 is 66, goal is get to pH > 7.2 by adjusting ventilation/ CO_2 . Should we adjust V_T or RR 1st? Pt is on 8 cc/kg tidal volume. Goal is 6 cc/kg in a pt with non-obstructive lung pathology. So, increase the minute ventilation by <u>adjusting the RR</u> (f) to 18.

Keep P_{plat} < 30 cmH₂O!

<u>**Concerns:**</u> Don't increase V_T (the other variable in minute ventilation) since the P_{plat} is > 30! If you increase V_T , the P_{plat} will likely increase to more dangerous levels & risk *barotrauma—lung injury*.

	Condition ARDS		click for drop	o-down list	ALARMS				
С	Р _{уеак} 43	P _{MBAN} 34	PEEP 10	I:E 1: 1.8	f _{ror} 18	v _™ 0.65	V _{етот} 11.7		
	cmH2O	cmH2O	cmH20		bpm	L	L/min	Current Al	BG
								рН	7.35
								pCO ₂	46
								PaO ₂	64
								HCO₃	24
								SaO ₂	90%
								BE	-2.3
	A/C		vc		v V _{trig}	75 kg			
	f 10	V _T	V _{MAX}	P ₃₀₇₇	Flow Sens	0,			
	18 1/min	U.6	30 L/min		∠ L/min	700			
	Rise Time % 20	т _л 0	Flow Patter	r	e _{sens} 25%	PEEP 10 cmH20		P _{plat} 39	Cstat 21

Prevent auto-PEEP: the I:E ratio is 1:1.8, which is < 1:2. For non-asthmatic, non-COPD pt, we want I:E to be close to 1:2 to ensure adequate expiratory time to avoid dynamic hyperinflation/auto-PEEP. So, fix by **increasing the V_{max}** (Inspiratory Flow Rate) to 40 L/min from 30 L/min.

<u>**Concerns</u>**: significant levels of auto-PEEP causes *barotrauma* and can result in decreased venous return, leading to hypotension & cardiac arrest.</u>

	Condition ARDS	 	click for drop	-down list	ALARMS				
С	Р _{явак} 45	P _{MEAN} 26	PEEP 10	I:E 1: 2.7	f _{тот} 18	v _™ 0.65	V _{2 TOT} 11.7		
	cmH20	cmH2O	cmH2O		bpm	L	L/min	Current ABG	
								pН	7.35
								pCO ₂	46
								PaO ₂	64
								HCO ₃	24
								SaO ₂	90%
								BE	-2.3
	A/C	<u> </u>	/c		v V _{trig}	75 ka			
	f 10	V _T	V _{MAX}	P _{surr}	Flow Sens	0, 100			
	10 1/min	U.0 L	40 L/min		∠ L/min	700			
	Rise Time ' 20	т _{яц} О	Flow Patter		e _{sens} 25%	PEEP 10 cmH20			

Wean FiO₂ from 100%: Now, try to wean the FiO₂ from toxic 100% to 85% & see. Use ARDSNET FiO₂/PEEP table to guide titration if pt is a lung-injury patient and not an obstructive-pattern patient. Try lowering **FiO₂** to 80%.

Concerns: O₂ levels can be toxic to alveoli at levels between 50-100%.

Wean FiO₂ from 100%: at 80% FiO₂, SaO₂ still > 88%--good.

Prevent lung injury: try to get $P_{plat} < 35$, while maintaining SaO₂ > 88-90%. Only 2 variables affect P_{plat} : V_T & PEEP. Let's lower V_T to ~7cc/kg which is ~ 0.5L. Goal V_T is **6cc/kg IBW** for lung protection strategy.

<u>Concerns</u>: Tolerate permissive hypercapnia (pCO_2 50-100 cm H_2O) in order to prevent lung injury. Might need more analgesia/sedation for this \rightarrow worry about BP effects of analgesia/sedation.

	ARDS		click for drop	-down list	ALARMS				
С	Р _{реак} 40	P _{MBAN} 21	PEEP 10	I:E 1: 3.4	f _{ror} 18	v _™ 0.55	Vetor 9.9		
	cmH20	cmH2O	cmH2O		bpm	L	L/min	Current A	BG
								рН	7.32
								pCO ₂	50
								PaO ₂	62
								HCO ₃	24
								SaO ₂	89%
								BE	-4.1
	A/C		vc		v V _{trig}	75 kg			
	f	V _T	VMAX	P ₃₀₇₇	Flow Sens	02			
	18 1/min	U.5	40 L/min		L/min	80			
	Dico Time *	-	Flow Dotter	1	-	DEED		P	Catat
	20	0			25%	10 cmH2D		34	21

Wean FiO2 from 100%: Try FiO₂ of 40% with just enough added PEEP to keep SaO₂ > 88-90%. Here, we needed to dial in 1 more cmH₂O of PEEP. If lung-injury patient, use **ARDSNET protocol** for adjusting FiO₂ & PEEP in tandem. Watch P_{plat} .

Prevent lung injury: Lowering the V_T to 7 cc/kg IBW resulted in a P_{plat} of 34--good. Goals is to get P_{plat} < 35, while maintaining SaO₂ > 88-90%. Goal TV is **6cc/kg IBW** for lung protection strategy. Can go down to V_T of 4 cc/kg IBW—but will require much sedation/analgesia to treat the hypercapnia! Per diagram below, 11 of PEEP at FiO₂ of 40% resulted in P_{plat} of 35.

<u>Concerns</u>: delicate balance when adjusting FiO_2 & PEEP to keep P_{plat} < 30-35 cmH₂O.

Scene 8

Issues to consider:

Analgesia: fentanyl, hydromorphone, morphine

Sedation: have IV fluids and vasopressors ready to infuse before giving sedatives.

Neuro/Asthma/COPD: Propofol (can drop BP)

Sepsis with tenuous MAP: dexmedetomidine (Precedex): can cause bradycardia, hypotension.

Seizures/Alcohol withdrawal/Asthma: ketamine (can raise BP), benzos

RASS Scale: +1 to -2

<u>Concerns</u>: goal is to prevent delirium by *not oversedating*. Always *ensure adequate analgesia*—patient has a hard piece of plastic in his throat after all. Select the best sedative based on clinical issues present.

	Richmond Agitation and Sedation Scale (RASS)						
+4	Combative	violent, immediate danger to staff					
+3	Very Agitated	Pulls or removes tube(s) or catheter(s); aggressive					
+2	Agitated	Frequent non-purposeful movement, fights ventilator					
+1	Restless	Anxious, apprehensive but movements not aggressive or vigorous					
0	Alert & calm						
-1	Drowsy	Not fully alert, but has sustained awakening to voice (eye opening & contact ≥ 10 sec)					
-2	Light sedation	Briefly awakens to voice (eye opening & contact < 10 sec)					
-3	Moderate sedation	Movement or eye-opening to voice (but no eye contact)					
-4	Deep sedation	No response to voice, but movement or eye opening to physical stimulation					
-5	Unarousable	No response to voice or physical stimulation					

OBSTRUCTIVE LUNG PATHOLOGY PATIENT

Scenario: A 33-year-old man is admitted to the ICU after a 6-hour history of worsening asthma symptoms. His medications include albuterol and an inhaled corticosteroid. Despite being treated with IV corticosteroids and high-volume nebulizer with albuterol and ipratropium bromide treatments, he remains symptomatic and can speak only one to two words between breaths. On physical exam, he appears uncomfortable and tired. Temperature is 36.8°C (98.2°F), blood pressure is 150/90 mm Hg, heart rate is 124 beats/min, and respiration rate is 32 breaths/min. Oxygen saturation by pulse oximetry is 92% on 60% oxygen by face mask. Lung examination now reveals a quiet chest where diffuse expiratory wheezes were heard just hours earlier. The patient is unable to perform a peak flow maneuver. Chest x-ray shows hyperinflation and no acute infiltrates. Results of arterial blood gas studies are shown in the table below.

BiPAP trial: FiO₂ 100%, IPAP:EPAP = 15/5, **SpO₂: 87%** Weight: **75** kg Decide to intubate. Get initial ABG results below and High-Pressure alarm goes off!

					ALARMS	5	High Ppeak		
C	P _{PEAK}	P _{MEAN}	PEEP	I:E	f _{TO}	r V _{te}	€ E TOT		
U	47	5	0	1: 9	9.0 8	0.30	2.4		
	cmH2O	cmH2O	cmH2O		bpm	ı L	L/min	Current A	BG
								рН	7.05
								pCO ₂	83
								PaO ₂	316
								HCO ₃	24
								SaO ₂	100%
								BE	-17.3
					9				
	A/C		VC		ν _{tri}	g 75 kg			
	f	V _T	₿MAX	P _{SUPP}	Flow S	ens O ₂			
	8	0.5	40		2	100			
	1/min	L	L/min		L/mi	in %			
	Rise Time %	т _{рі} 0	Flow Pattern		E _{SEN} 259	NS PEEP	P _{PLA}	- Cst 10	^{tat} 49

Scene 1

С	Р _{реак}	P _{MEAN}	PEEP	I:E	f _{τοτ}	ν _{τε}	∜ _{∈тот}
	47	7	O	1: 7.0	10	0.30	3.0
	cmH2O	cmH2O	cmH2O		bpm	L	L/min

I

	Current AB	G
	pН	7.14
had just increased RR to 10 from 8	pCO ₂	72
	PaO ₂	316
	HCO ₃	24
	SaO ₂	100%
	BE	-12.8

A/C		\hat{V}_{trig}	75 kg		
f	V _T	₿ _{MAX}	P _{SUPP}	Flow Sens	02
10	0.5	40		2	100
1/min	L	L/min		L/min	%
Rise Time %	T _{PL}	Flow Pattern		E _{SENS}	PEEP
20	0	N		25%	0
		RAMP			cmH2O

Condition		
Status Asthmancus	= click for drop-down list	ALARMS

High Ppeak

С	_Р	Р	PEEP	I:E	f	v	v
	65	6	O	1: 11.0	10	0.30	3.0
	cmH2O	cmH2O	cmH2O		bpm	L	L/min

Current A	BG
pН	7.14
pCO ₂	72
PaO ₂	316
HCO,	24
SaO,	100%
BE	-12.8

A/C	<u> </u>	vc		v	75 kg		
f 10	V, 0.5	V _{MAX}	P ₅₀₇₇	Flow Sens 2	0 <u>,</u> 100		
1/min	L.	L/min		L/min	%		
Rise Time %	T _{PL}	Flow Pattern		Esens	PEEP	P _{PLAT}	Cstat
20	0	RAMP		25%	0 cmH20	10	49

\frown	P	P	DEED	1.5	f	V	¥		
	г реак 47	^{F MEAN}	0	1: 4.7	14	0.30	4.2		
	cmH2O	cmH2O	cmH2O		bpm	L	L/min	•	
								Current Al	BG
								рН	7.25
						Since MV was low,		pCO ₂	59
					i	increased RR to 14		PaO ₂	316
								HCO ₃	24
								SaO ₂	100%
								BE	-7.6
					8				
	A/C		/C		V _{trig}	75 kg			
	f	VT	₿ _{MAX}	P _{SUPP}	Flow Sen	s O ₂			
	14	0.5	40		2	100			
	1/min	L	L/min		L/min	%			

se Time 20

low Pat

PEEP 0 cmH2O

2	P _{PEAK}	P _{MEAN}	PEEP	I:E		f _{TOT}	V _{TE}	₹ E TOT		
U.	49	13	0	1: 3	3.8	14	0.40	5.6		
	cmH2O	cmH2O	cmH2O			bpm	L	L/min	Current A	BG
									pH	7.31
						By increasing	Vt to 0.6, the		pCO ₂	51
						r pour a r pr	a morousou.		PaO ₂	316
									HCO ₃	24
									SaO ₂	100%
									BE	-4.4
	A/C		vc			v vtrig	75 kg			
	f	V _T	₿ _{MAX}	P _{SUPP}		Flow Sens	0 ₂			
	14	0.6	40			2	100			
	1/min	L	L/min			L/min	%			
	Pico Timo %	Т.,	Elow Pattorn			F	DEED		PPLAT	Cstat
	20		Flow Fattern			25%			12	49
	20		RAMP			2370	cmH2O		12	45
							011120			

Look at alarm: it's a high peak pressure alarm—expected for an asthma exacerbation with bronchoconstriction. Airway Pressures may be as high as > 70 cmH₂O.

Why is P_{peak} **high?** Bronchoconstriction. Is pt crashing? What's the BP? What pressures are the alveoli feeling? Check a P_{plat} . Hopefully, it's < 30 cmH₂O.

Simultaneously address any hypoxemia, hypercarbia, BP and goal of ensuring adequate expiratory time. Keep RR on the low side, e.g., 6-10/min. Decrease the i-time by increasing the inspiratory flow rate. Want I:E ~ 1:4 or 1:5 \rightarrow Must prevent significant auto-PEEP which can decrease venous return. If see significant auto-PEEP, decrease RR & increase Vt. Continuous bronchodilators for at least the 1st hour. IV Mg.

Initial ventilator settings: Vt = 8 cc/kg IBW; FiO₂ 100% to start; RR = 10; want I:E to be 1:4 or 1:5.

Calls to action: fix hypoxemia; optimize airway pressures (ie, keep Pplat < 30; PIP < 50; auto-PEEP < 10 - 15) by adjusting RR and V_T and \dot{V}_{MAX} ; then fix pH via pCO2 by adjusting RR & V_T to maintain adequate MV.

Recognize: increasing \dot{V}_{MAX} can decrease i-time while prolonging e-time. Want I:E to be 1:4 or 1:5.

However, increasing V_{MAX} can increase PIP. Keep RR 8-10. May need NMB during 1st few hours to maintain patient-vent synchrony.

Induction agent: ketamine or propofol.

THE HYPERVENTILATORY STATE PATIENT

Scenario: Fatiguing DKA patient with RR of 30. ABG: 7.0/68/80/13 on 2L NC. You decide to intubate. What ventilator adjustments must be considered after the patient is placed on mechanical ventilation?

Issues to consider:

Calls to action: Do not forget to adjust ventilator settings to continue the respiratory compensation in an acidotic patient who was hyperventilating to compensate prior to your placing him on mechanical ventilation! That is, ensure RR is high enough to continue blowing off CO2 to raise his pH. Target his pCO2 to be near 20 mmHg as appropriate compensation for his severe metabolic acidosis.

Initial ventilator settings: $V_t = 8 \text{ cc/kg IBW}$; FiO₂ 100% to start; RR = 30.

Some common things you can do after stabilizing patient: preventing delirium by checking for other things that can cause patient-ventilator dyssynchrony

 Auto-PEEP: If Peak Pressures (P_{peak}) start to rise, look at Flow-Time waveform to check for PEEP_i or auto-PEEP. Adjust by *decreasing the RR or f to allow more Expiratory time—usually* ~ 10 breaths per minute to start with. For asthmatics/COPD patients, target an I:E ratio to 1:4 or 1:5. For other patients, target 1:2.

2. Flow Starvation: Look at Pressure-Time waveform to check for relative airflow starvation (will see concave deflection during inspiration phase). Adjust by changing V_{max}, or "Peak Flow" or "Inspiratory Flow Rate."

 Plateau Pressures: check the plateau pressure if Peak pressure starts to rise. Perform this 0.2-0.4 second inspiratory-hold measurement. Adjust V_T and PEEP to keep P_{plat} < 30 cmH₂O.

ALARM ALARM ALARM!!!!!

BP is 40/20! High-Pressure alarm is sounding...

1st move?

Disconnect the Y-connector from the patient's ET tube (but, leave the ET tube in place!) & wait for any air to rush out of the patient (from auto-PEEP); if no air is heard rushing out of the patient, manually bag the patient to see if bagging is easy. If patient bags easily, the alarms are likely due to a ventilator issue or fluid in the ventilator tubing or kinking of the tubing.

Next. . .

- Check ETCO₂ to ensure that the ETT is still in proper position.
- Apply suction catheter to suck out any mucous/mucous plugs.
- Check for pneumothorax (lung exam, use U/S if available, CXR).
- Check for tube kinking anywhere in the circuit.
- If low pressure alarm, check for any tube disconnections; check endotracheal tube cuff pressure (should be 20-25 cmH₂O).
- If elevated peak pressures are seen, check P_{plat} to see if there is a compliance or resistance issue.
- Start albuterol nebulizers/bronchodilators if suspect bronchoconstriction. Listen for wheezing.
- Check CXR for worsening ARDS, pulmonary edema, etc.

DISCONNECT VENTILATOR FROM ET TUBE IF PT IS CRASHING

Modified from: Fig. 1 Approach to PIP alarms and categorization of underlying causes. Clemons J, Kearns M. Invasive Mechanical Ventilation. Hosp Med Clin 5 (2016) 17–29.

fix

PEARLS & TAKE-HOME POINTS

- For obstructive pathology patients (eg, asthma, COPD):
 - Adjust RR 1st when dealing with pCO₂ issues. Beware if you decide to consider adjusting T_V first to increase minute ventilation.
 - o **prevent** significant **auto-PEEP** -- usually by fine tuning the RR. Check Flow-Time waveform.
 - Get I:E ratio close to 1:4 or 1:5 -- usually by fine tuning the RR setting and the Peak Flow(Inspiratory Flow Rate)
- For lung injury pathology patients (eg, ARDS, pneumonia, pancreatitis, acute pulmonary edema, trauma, etc.):
 - \circ prevent volu-/baro-/atelectrauma -- Keep P_{plat} < 30 cmH₂O by using low V_T strategy of 6cc/kg.
 - \circ $\;$ usually will want to adjust $T_V \, 1^{st}$ when dealing with P_{plat} elevations.
- For hyperventilatory state pathology patients (eg, severe metabolic acidosis/DKA):
 - Give them back their respiratory compensation while on the ventilator—usually with the RR setting.
- Known COPD: target patient's baseline pCO_2 with goal of adjusting pCO_2 to get to a pH > 7.1.
- An exhaled tidal volume much lower than the set tidal volume =
 - a loss of ventilator-circuit integrity or an air leak around the endotracheal tube
 - o an inadequate expiratory time due to obstructive lung disease or ventilator-patient asynchrony.
- An exhaled tidal volume higher than the set tidal volume = may be effect of large cardiogenic oscillation.
 Cardiogenic oscillations are fluctuations in ventilator airway pressure, flow, and potentially volume waveforms in phase with the cardiac cycle.

Abbreviations:

R _{peak} = peak resistance	V _T = tidal volume	RR = respiratory rate
P _{plat} = plateau pressure	PIP = peak inspiratory pressure	
iTime = inspiratory time	eTime = expiratory time	
\dot{V}_{max} = inspiratory flow rate (liters per minute) or peak	inspiratory flow or "peak flow"	
C _{dyn} = dynamic compliance	C _{stat} = static compliance	

References

- 1. Pham T et al. Asynchrony Consequences and Management. Crit Care Clin 34 (2018) 325-341.
- Scott Weingart. EMCrit Lecture Dominating the Vent: Part I. EMCrit Blog. Published on May 24, 2010. Accessed on October 29th 2018. Available at [https://emcrit.org/emcrit/vent-part-1/].
- 3. Scott Weingart. EMCrit Lecture Dominating the Vent: Part II. EMCrit Blog. Published on June 1, 2010. Accessed on October 29th 2018. Available at [https://emcrit.org/emcrit/vent-part-2/].
- 4. Imanaka H, Takeuchi M, Tachibana K, Nishimura M. Exhaled tidal volume overestimation in mechanically ventilated patients with large cardiogenic oscillation. Crit Care Med. 2004 Jul;32(7):1546-9.
- 5. Clemons J, Kearns M. Invasive Mechanical Ventilation. Hosp Med Clin 5 (2016) 17-29.
- 6. http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf