Pt was recently intubated, set on SIMV/Vt 500/RR 12/PEEP 5/FiO2 100%, breathing 28 bpm

- Patient looks incredibly uncomfortable. Pox is 93%, ETCO2 is 35
- a) Paralyze the patient
- b) Increase the PEEP
- c) Increase the Vt
- d) Sedate the patient
- e) Add Pressure Support

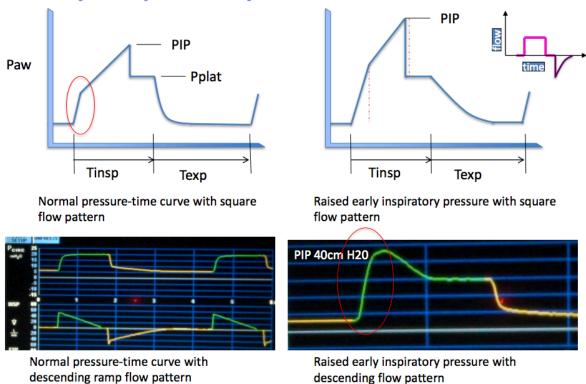
Ans: E.

- a) Paralyze the patient
- Don't do this unless you know what you're doing
- b) Increase the PEEP
- Oxygenation is OK. Don't need to do this
- c) Increase the Vt
- Ventilation is OK. Don't need to do this
- d) Sedate the patient
- Maybe...
- e) SIMV with Pressure Support
- Never use SIMV without pressure support
- Remember SIMV only gives you the set RR
- The pt is only getting 12 mechanical breaths
- 16 breaths are pt-generated... against all the resistance of the tubing!!!!

Torture!

Pt was recently intubated, set on AC/Vt 600/RR 18/PEEP 5/FiO2 100%, breathing 28 bpm

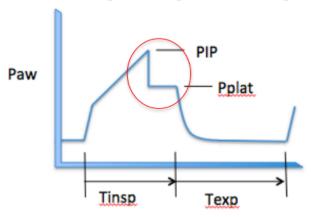
- RT tells you that the ABG: 7.65/12/400/24/98% and asks you what you want done.
- a) Increase the PEEP
- b) Decrease the RR
- c) Increase the Tidal Volume
- d) Give Bicarbonate
- e) Decrease Tidal Volume
- f) None of the above
- a) Increase the PEEP
- Don't need to, oxygenation is fine
- b) Decrease the RR
- Most common choice. Most common error
- c) Increase the Tidal Volume
- Probably already too high
- d) Give Bicarb
- Pt is already markedly alkalotic
- e) Decrease Tidal Volume
- Maybe. Tidal volume should not be more than 10 cc/kg IBW. Set Vt at 8cc/kg IBW
- f) None of the above
- Maybe. Pt may need sedation/analgesia

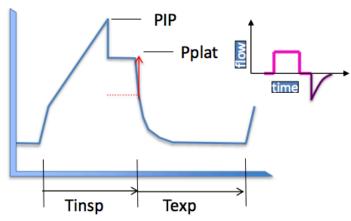

Waveforms 5-point assessment (from the top)

- 1) Early inspiratory pressure
- 2) End inspiratory pressure
 - 3) Plateau pressure
 - 4) Expiratory flow curve
 - 5) AutoPEEP

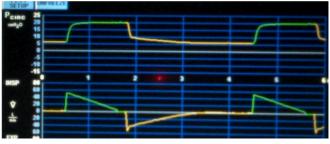
Early Inspiratory Pressure

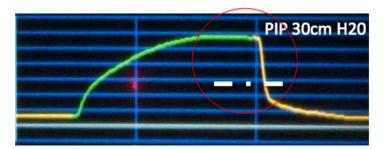
- The initial pressure generated to overcome resistance in the airways.
- No volume is delivered at this time, simply a rise in pressure enough to start pushing air in.
- An abnormal rise in this pressure is an indication of increased airway resistance.


Early Inspiratory Pressure Waveforms


End Inspiratory Pressure

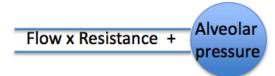
- The pressure generated to overcome lung compliance.
- · Added on top of Pres.
- An abnormal rise in this pressure is an indication of decreased lung compliance.


End Inspiratory Pressure Waveforms

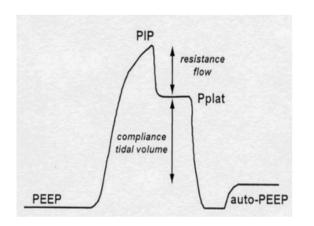

Normal pressure-time curve with square flow pattern

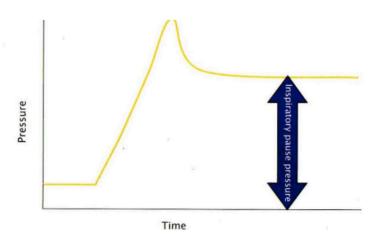
Raised end inspiratory pressure with square flow pattern

Normal pressure-time curve with descending ramp flow pattern


Raised end inspiratory pressure with descending flow patterm

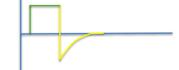
Plateau Pressure


- An increase in pressure at end inspiration as a result of decreased compliance.
- Measured by performing an 'inspiratory hold' on the ventilator.
- Causes of increased Pplat include: lung, pleura, chest wall, patient-ventilator dyssynchrony.


Plateau Pressure Waveforms

- Measured at the end of inspiration when there is no flow.
- Airway pressure

- = (flow x resistance) + alveolar pressure
- = (0 x resistance) + alveolar pressure
- = alveolar pressure
- High alveolar pressure may be due to excessive VT, gas-trapping, PEEP, decreased compliance.

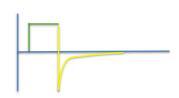

Expiratory Flow Waveforms

- Expiratory flow is a passive process reliant on the natural recoil of the lungs and chest wall.
- Like the pressure waveform the expiratory flow curve too can illustrate resistance and compliance.
- Essentially increased resistance is a linear expiratory waveform and decreased compliance is a concave expiratory waveform.

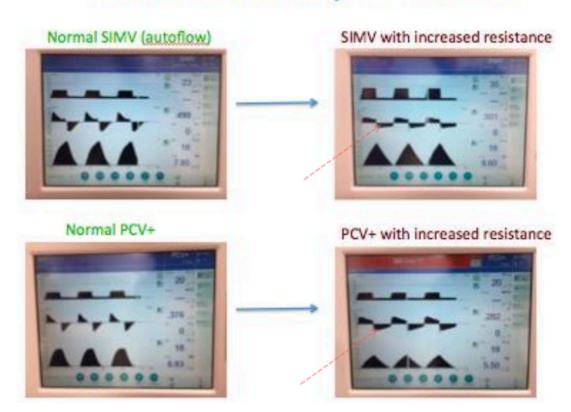
Expiratory flow shapes

Normal:

- Expiratory flow curve triangular (shallow curve returning to baseline).
- >80% gas expired in first second of expiration.

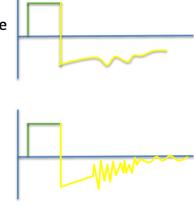

· Increased resistance:

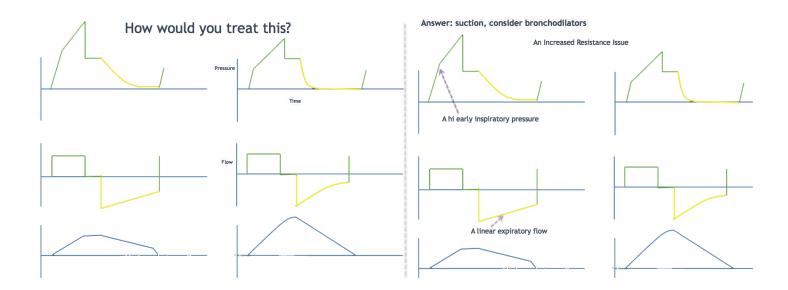
- Expiratory flow curve horizontal/linear.
- <80% gas expired in first second of expiration.
- Resistance constant, may not return to baseline.



· Decreased compliance:

- Expiratory flow curve is deep and concave.
- <80% gas expired in first second of expiration.
- Resistance increases as lung volume decreases.

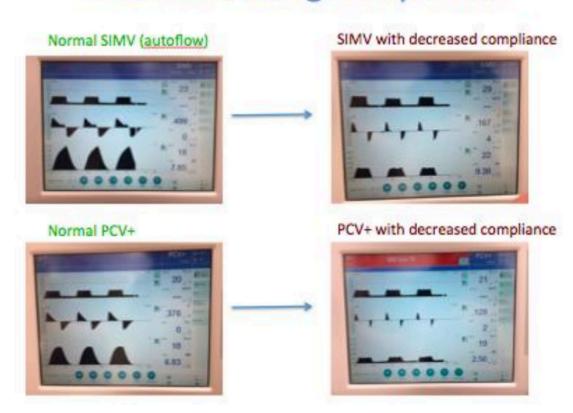



Increased Airway Resistance

Increased Resistance Characteristics

- Linear expiratory flow due to constant resistance.
- The smaller the flow triangle the worse the resistance. Assess PEV1.
- End expiratory flow may not return to baseline- gas trapping- perform expiratory hold.
- Turbulent expiratory flow pattern due to obstruction eg tumour.
- Rain out and cardiac pulsations.

Troubleshooting increased resistance...


May be due to:

- ETT eg too small, kinked, blocked/clogged with secretions/sputum, patient biting, inline suction catheter not fully removed
- Bronchospasm, airway pathology, disease process
- Malplaced ETT eg dislodgment, bronchial intubation
- Kinked/blocked ventilator tubing (secretions/condensation)

May require:

- Checking of circuit/ETT for kinks/obstructions
- Suctioning
- Increased sedation/analgesia, bronchodilators
- Diagnostics eg CXR, bronchoscopy
- · Change of ETT/trache

Decreased Lung Compliance

Decreased Compliance Characteristics

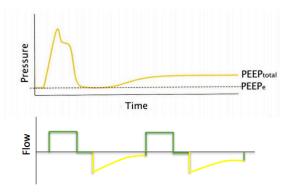
- Deep concave curve.
- The smaller the flow triangle the worse the compliance. Assess PEV1.
- May or may not return to baseline, gas-trappingperform expiratory hold.
- Pressure waveform has raised end expiratory pressure and Pplat.

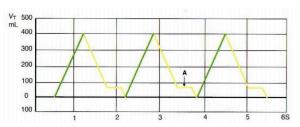
Troubleshooting decreased compliance...

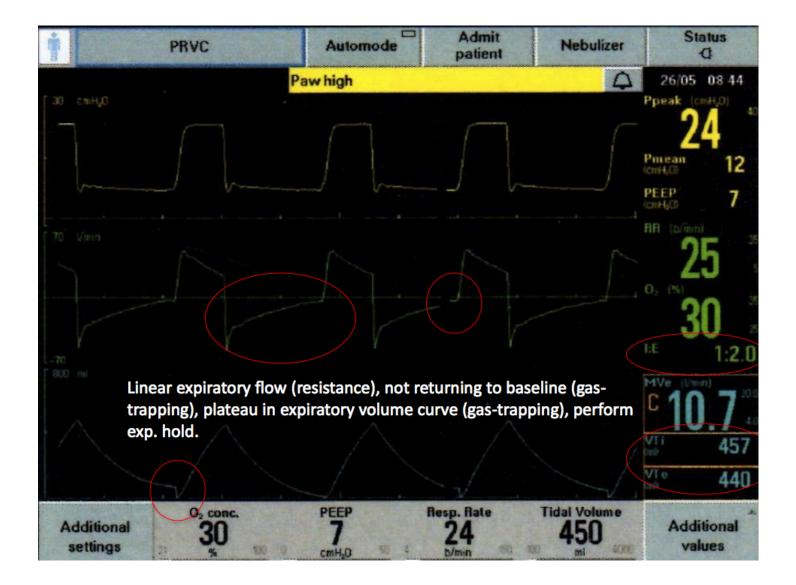
- May be due to:
 - Lung e.g. collapse, consolidation, pulmonary oedema, asthma, COPD, ARDS
 - Pleura e.g. pleural effusion, pneumo/haemothorax
 - · Chest wall e.g. abdominal distention, obesity, kyphoscoliosis
 - · Patient-ventilator dysynchrony, coughing

May require:

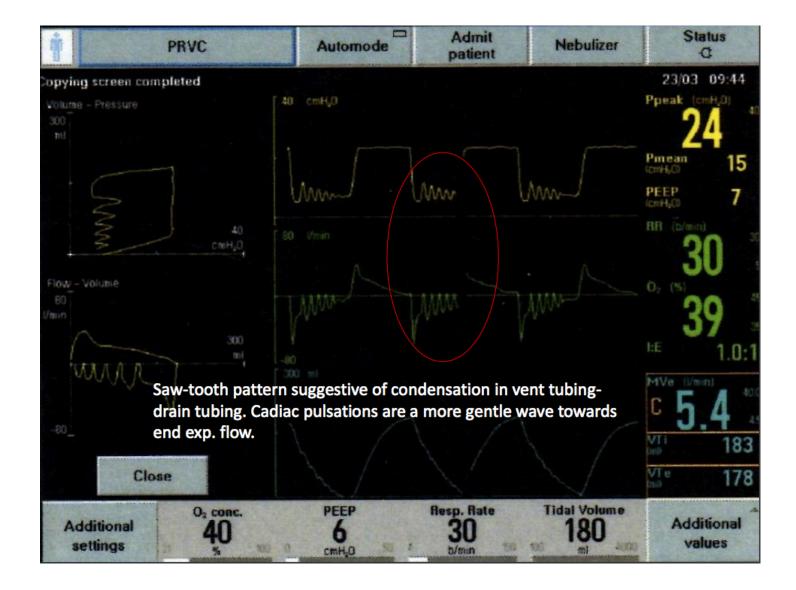
- CXR
- · Bronchodilators, chest drain
- · Repositioning eg sitting upright, lateral lie to favour lung, proning
- · Change in ventilation strategy

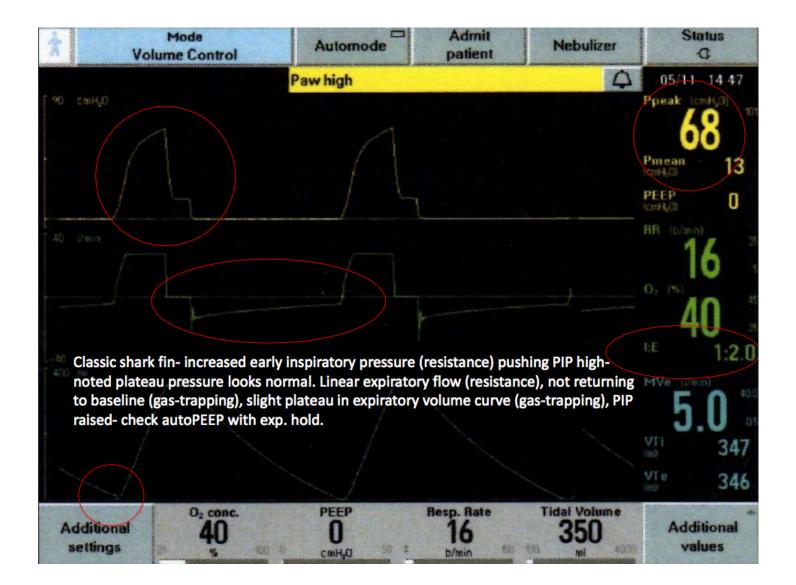

iPEEP

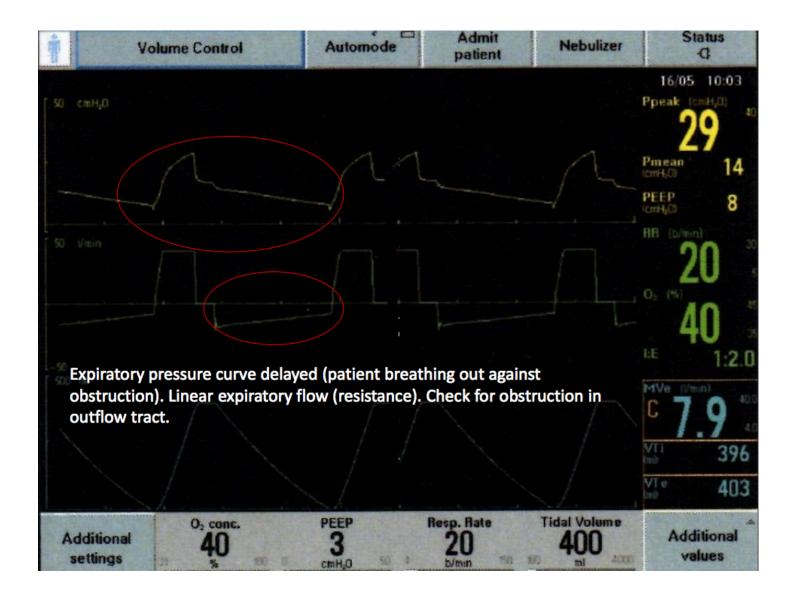

- Also known as autoPEEP, gas/air trapping, dynamic hyperinflation.
- An increase in pressure at end expiration due to baseline lung volume that is greater than the FRC as a result of increased Raw and insufficient expiratory time.
- Measured by performing an 'expiratory hold' on the ventilator.
- Most commonly seen in diseases such as COPD and asthma.

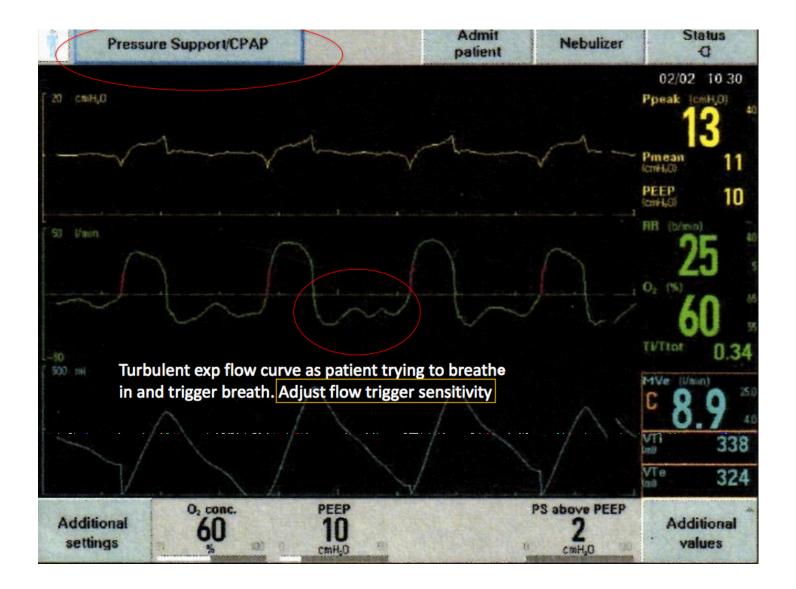

iPEEP = auto-PEEP


iPEEP Waveforms


- Pressure rise during expiratory hold.
- Expiratory flow fails to return to baseline.
- Plateau (A) in volume waveform as VTe is less than VT due to gastrapping.







References

Covidien (2012). Ventilator Waveforms Graphical Presentation. Covidien.

Garg, S. (2010). Mechanical Ventilation. SlideShare. Viewed 16th November 2016, http://www.slideshare.net/doctorshalinigarg/mechanical-ventilation-3355414>

Gommersall, C., Joynt, G., Tang, S., Reade, M., Flaatten, H., Freebairn, R. & Loew, C. (2014). Mechanical ventilation: beyond basic. Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong.

lyer, V. (2016). Ventilator waveforms: basic interpretation and analysis. American Thoracic Society. Viewed 16th November 2016, https://www.thoracic.org/professionals/clinical-resources/critical-care/clinical-education/mechanical-ventilation/ventilator-waveform-analysis.php

LITFL. (2015). High airway and alveolar pressures. Viewed 27th Nov 2016, http://lifeinthefastlane.com/ccc/high-airway-and-alveolar-pressures/

John Hopkins School of Medicine. (1995). Interactive Respiraotry Physiology: airway resistance. Viewed 25th Oct 2017, http://oac.med.jhmi.edu/res_phys/Encyclopedia/AirwayResistance/AirwayResistance.HTML

John Hopkins School of Medicine. (1995). Interactive Respiraotry Physiology: compliance. Viewed 25th Oct 2017, http://oac.med.jhmi.edu/res_phys/Encyclopedia/Compliance/Compliance.HTML

Workshop notes from Prof D. Tuxen's Airway Obstruction Waveforms Workshop, The Alfred Mechanical Ventilation Conference
The Alfred, Melbourne.

2015,

Image References

- Gas exchange: http://byjus.com/biology/exchange-regulation-of-gases/
- Blaming the dog: https://floroy1942.wordpress.com/tag/cartoons/
- Bronchial tree: https://www.dreamstime.com/stock-images-bronchial-tree-image20704714
- Compliance Curve: http://oac.med.jhmi.edu/res_phys/Encyclopedia/Compliance/Compliance.HTML
- I love you balloons: http://www.dimitri.co.uk/romance/inflated-deflated-baloons-love.html
- Resistance/Compliance Pressure Curve: http://www.slideshare.net/bibinibaby5/mechanical-ventilation-ppt?next-slideshow=1
- Googling diagnosis: https://www.pinterest.com/crickeygirl/medical-cartoons/
- Normal Pressure Curve: Kremeier, P. & Woll, C. (2015). The Kronburg List of Ventilation Modes. Pabst Science Publishers. Lengerich.
- Paw waveforms: http://www.slideshare.net/doctorshalinigarg/mechanical-ventilation-3355414
- Thermometer: https://www.pinterest.com/crickeygirl/medical-cartoons/
- Maquet (date unknown). Waveforms and troubleshooting. Beyond Basic course material, May 29th 2016, Nepean Hospital.